123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253 |
- function floatEqual(a, b) {
- return Math.abs(a - b) * 100000 <= Math.min(Math.abs(a), Math.abs(b));
- }
- function floatZero(f) {
- return Math.abs(f) <= 0.00001;
- }
- function lerp(p0, p1, amount) {
- return p0 * (1 - amount) + p1 * amount;
- }
- function lerpPoint(p0, p1, amount) {
- return [lerp(p0[0], p1[0], amount), lerp(p0[1], p1[1], amount)];
- }
- function quadRoots(a, b, c) {
- // no root
- if (a === 0) return [];
- var s = b * b - 4 * a * c;
- // Complex roots
- if (s < 0) return [];
- var singleRoot = -b / (2 * a);
- // 1 root
- if (s === 0) return [singleRoot];
- var delta = Math.sqrt(s) / (2 * a);
- // 2 roots
- return [singleRoot - delta, singleRoot + delta];
- }
- function polynomialCoefficients(p0, p1, p2, p3) {
- return [
- -p0 + 3 * p1 - 3 * p2 + p3,
- 3 * p0 - 6 * p1 + 3 * p2,
- -3 * p0 + 3 * p1,
- p0,
- ];
- }
- function singlePoint(p) {
- return new PolynomialBezier(p, p, p, p, false);
- }
- function PolynomialBezier(p0, p1, p2, p3, linearize) {
- if (linearize && pointEqual(p0, p1)) {
- p1 = lerpPoint(p0, p3, 1 / 3);
- }
- if (linearize && pointEqual(p2, p3)) {
- p2 = lerpPoint(p0, p3, 2 / 3);
- }
- var coeffx = polynomialCoefficients(p0[0], p1[0], p2[0], p3[0]);
- var coeffy = polynomialCoefficients(p0[1], p1[1], p2[1], p3[1]);
- this.a = [coeffx[0], coeffy[0]];
- this.b = [coeffx[1], coeffy[1]];
- this.c = [coeffx[2], coeffy[2]];
- this.d = [coeffx[3], coeffy[3]];
- this.points = [p0, p1, p2, p3];
- }
- PolynomialBezier.prototype.point = function (t) {
- return [
- (((this.a[0] * t) + this.b[0]) * t + this.c[0]) * t + this.d[0],
- (((this.a[1] * t) + this.b[1]) * t + this.c[1]) * t + this.d[1],
- ];
- };
- PolynomialBezier.prototype.derivative = function (t) {
- return [
- (3 * t * this.a[0] + 2 * this.b[0]) * t + this.c[0],
- (3 * t * this.a[1] + 2 * this.b[1]) * t + this.c[1],
- ];
- };
- PolynomialBezier.prototype.tangentAngle = function (t) {
- var p = this.derivative(t);
- return Math.atan2(p[1], p[0]);
- };
- PolynomialBezier.prototype.normalAngle = function (t) {
- var p = this.derivative(t);
- return Math.atan2(p[0], p[1]);
- };
- PolynomialBezier.prototype.inflectionPoints = function () {
- var denom = this.a[1] * this.b[0] - this.a[0] * this.b[1];
- if (floatZero(denom)) return [];
- var tcusp = (-0.5 * (this.a[1] * this.c[0] - this.a[0] * this.c[1])) / denom;
- var square = tcusp * tcusp - ((1 / 3) * (this.b[1] * this.c[0] - this.b[0] * this.c[1])) / denom;
- if (square < 0) return [];
- var root = Math.sqrt(square);
- if (floatZero(root)) {
- if (root > 0 && root < 1) return [tcusp];
- return [];
- }
- return [tcusp - root, tcusp + root].filter(function (r) { return r > 0 && r < 1; });
- };
- PolynomialBezier.prototype.split = function (t) {
- if (t <= 0) return [singlePoint(this.points[0]), this];
- if (t >= 1) return [this, singlePoint(this.points[this.points.length - 1])];
- var p10 = lerpPoint(this.points[0], this.points[1], t);
- var p11 = lerpPoint(this.points[1], this.points[2], t);
- var p12 = lerpPoint(this.points[2], this.points[3], t);
- var p20 = lerpPoint(p10, p11, t);
- var p21 = lerpPoint(p11, p12, t);
- var p3 = lerpPoint(p20, p21, t);
- return [
- new PolynomialBezier(this.points[0], p10, p20, p3, true),
- new PolynomialBezier(p3, p21, p12, this.points[3], true),
- ];
- };
- function extrema(bez, comp) {
- var min = bez.points[0][comp];
- var max = bez.points[bez.points.length - 1][comp];
- if (min > max) {
- var e = max;
- max = min;
- min = e;
- }
- // Derivative roots to find min/max
- var f = quadRoots(3 * bez.a[comp], 2 * bez.b[comp], bez.c[comp]);
- for (var i = 0; i < f.length; i += 1) {
- if (f[i] > 0 && f[i] < 1) {
- var val = bez.point(f[i])[comp];
- if (val < min) min = val;
- else if (val > max) max = val;
- }
- }
- return {
- min: min,
- max: max,
- };
- }
- PolynomialBezier.prototype.bounds = function () {
- return {
- x: extrema(this, 0),
- y: extrema(this, 1),
- };
- };
- PolynomialBezier.prototype.boundingBox = function () {
- var bounds = this.bounds();
- return {
- left: bounds.x.min,
- right: bounds.x.max,
- top: bounds.y.min,
- bottom: bounds.y.max,
- width: bounds.x.max - bounds.x.min,
- height: bounds.y.max - bounds.y.min,
- cx: (bounds.x.max + bounds.x.min) / 2,
- cy: (bounds.y.max + bounds.y.min) / 2,
- };
- };
- function intersectData(bez, t1, t2) {
- var box = bez.boundingBox();
- return {
- cx: box.cx,
- cy: box.cy,
- width: box.width,
- height: box.height,
- bez: bez,
- t: (t1 + t2) / 2,
- t1: t1,
- t2: t2,
- };
- }
- function splitData(data) {
- var split = data.bez.split(0.5);
- return [
- intersectData(split[0], data.t1, data.t),
- intersectData(split[1], data.t, data.t2),
- ];
- }
- function boxIntersect(b1, b2) {
- return Math.abs(b1.cx - b2.cx) * 2 < b1.width + b2.width
- && Math.abs(b1.cy - b2.cy) * 2 < b1.height + b2.height;
- }
- function intersectsImpl(d1, d2, depth, tolerance, intersections, maxRecursion) {
- if (!boxIntersect(d1, d2)) return;
- if (depth >= maxRecursion || (d1.width <= tolerance && d1.height <= tolerance && d2.width <= tolerance && d2.height <= tolerance)) {
- intersections.push([d1.t, d2.t]);
- return;
- }
- var d1s = splitData(d1);
- var d2s = splitData(d2);
- intersectsImpl(d1s[0], d2s[0], depth + 1, tolerance, intersections, maxRecursion);
- intersectsImpl(d1s[0], d2s[1], depth + 1, tolerance, intersections, maxRecursion);
- intersectsImpl(d1s[1], d2s[0], depth + 1, tolerance, intersections, maxRecursion);
- intersectsImpl(d1s[1], d2s[1], depth + 1, tolerance, intersections, maxRecursion);
- }
- PolynomialBezier.prototype.intersections = function (other, tolerance, maxRecursion) {
- if (tolerance === undefined) tolerance = 2;
- if (maxRecursion === undefined) maxRecursion = 7;
- var intersections = [];
- intersectsImpl(intersectData(this, 0, 1), intersectData(other, 0, 1), 0, tolerance, intersections, maxRecursion);
- return intersections;
- };
- PolynomialBezier.shapeSegment = function (shapePath, index) {
- var nextIndex = (index + 1) % shapePath.length();
- return new PolynomialBezier(shapePath.v[index], shapePath.o[index], shapePath.i[nextIndex], shapePath.v[nextIndex], true);
- };
- PolynomialBezier.shapeSegmentInverted = function (shapePath, index) {
- var nextIndex = (index + 1) % shapePath.length();
- return new PolynomialBezier(shapePath.v[nextIndex], shapePath.i[nextIndex], shapePath.o[index], shapePath.v[index], true);
- };
- function crossProduct(a, b) {
- return [
- a[1] * b[2] - a[2] * b[1],
- a[2] * b[0] - a[0] * b[2],
- a[0] * b[1] - a[1] * b[0],
- ];
- }
- function lineIntersection(start1, end1, start2, end2) {
- var v1 = [start1[0], start1[1], 1];
- var v2 = [end1[0], end1[1], 1];
- var v3 = [start2[0], start2[1], 1];
- var v4 = [end2[0], end2[1], 1];
- var r = crossProduct(
- crossProduct(v1, v2),
- crossProduct(v3, v4)
- );
- if (floatZero(r[2])) return null;
- return [r[0] / r[2], r[1] / r[2]];
- }
- function polarOffset(p, angle, length) {
- return [
- p[0] + Math.cos(angle) * length,
- p[1] - Math.sin(angle) * length,
- ];
- }
- function pointDistance(p1, p2) {
- return Math.hypot(p1[0] - p2[0], p1[1] - p2[1]);
- }
- function pointEqual(p1, p2) {
- return floatEqual(p1[0], p2[0]) && floatEqual(p1[1], p2[1]);
- }
- export {
- PolynomialBezier,
- lineIntersection,
- polarOffset,
- pointDistance,
- pointEqual,
- floatEqual,
- };
|