12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001 |
- /*
- * Copyright 2014 Google Inc. All rights reserved.
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #ifndef FLATBUFFERS_H_
- #define FLATBUFFERS_H_
- #include <assert.h>
- #include <cstdint>
- #include <cstddef>
- #include <cstring>
- #include <string>
- #include <type_traits>
- #include <vector>
- #include <algorithm>
- #if __cplusplus <= 199711L && \
- (!defined(_MSC_VER) || _MSC_VER < 1600) && \
- (!defined(__GNUC__) || \
- (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__ < 40603))
- #error A C++11 compatible compiler is required for FlatBuffers.
- #error __cplusplus _MSC_VER __GNUC__ __GNUC_MINOR__ __GNUC_PATCHLEVEL__
- #endif
- // The wire format uses a little endian encoding (since that's efficient for
- // the common platforms).
- #if !defined(FLATBUFFERS_LITTLEENDIAN)
- #if defined(__GNUC__) || defined(__clang__)
- #ifdef __BIG_ENDIAN__
- #define FLATBUFFERS_LITTLEENDIAN 0
- #else
- #define FLATBUFFERS_LITTLEENDIAN 1
- #endif // __BIG_ENDIAN__
- #elif defined(_MSC_VER)
- #if defined(_M_PPC)
- #define FLATBUFFERS_LITTLEENDIAN 0
- #else
- #define FLATBUFFERS_LITTLEENDIAN 1
- #endif
- #else
- #error Unable to determine endianness, define FLATBUFFERS_LITTLEENDIAN.
- #endif
- #endif // !defined(FLATBUFFERS_LITTLEENDIAN)
- #define FLATBUFFERS_VERSION_MAJOR 1
- #define FLATBUFFERS_VERSION_MINOR 0
- #define FLATBUFFERS_VERSION_REVISION 0
- #define FLATBUFFERS_STRING_EXPAND(X) #X
- #define FLATBUFFERS_STRING(X) FLATBUFFERS_STRING_EXPAND(X)
- namespace flatbuffers {
- // Our default offset / size type, 32bit on purpose on 64bit systems.
- // Also, using a consistent offset type maintains compatibility of serialized
- // offset values between 32bit and 64bit systems.
- typedef uint32_t uoffset_t;
- // Signed offsets for references that can go in both directions.
- typedef int32_t soffset_t;
- // Offset/index used in v-tables, can be changed to uint8_t in
- // format forks to save a bit of space if desired.
- typedef uint16_t voffset_t;
- typedef uintmax_t largest_scalar_t;
- // Wrapper for uoffset_t to allow safe template specialization.
- template<typename T> struct Offset {
- uoffset_t o;
- Offset() : o(0) {}
- Offset(uoffset_t _o) : o(_o) {}
- Offset<void> Union() const { return Offset<void>(o); }
- };
- inline void EndianCheck() {
- int endiantest = 1;
- // If this fails, see FLATBUFFERS_LITTLEENDIAN above.
- assert(*reinterpret_cast<char *>(&endiantest) == FLATBUFFERS_LITTLEENDIAN);
- (void)endiantest;
- }
- template<typename T> T EndianScalar(T t) {
- #if FLATBUFFERS_LITTLEENDIAN
- return t;
- #else
- #if defined(_MSC_VER)
- #pragma push_macro("__builtin_bswap16")
- #pragma push_macro("__builtin_bswap32")
- #pragma push_macro("__builtin_bswap64")
- #define __builtin_bswap16 _byteswap_ushort
- #define __builtin_bswap32 _byteswap_ulong
- #define __builtin_bswap64 _byteswap_uint64
- #endif
- // If you're on the few remaining big endian platforms, we make the bold
- // assumption you're also on gcc/clang, and thus have bswap intrinsics:
- if (sizeof(T) == 1) { // Compile-time if-then's.
- return t;
- } else if (sizeof(T) == 2) {
- auto r = __builtin_bswap16(*reinterpret_cast<uint16_t *>(&t));
- return *reinterpret_cast<T *>(&r);
- } else if (sizeof(T) == 4) {
- auto r = __builtin_bswap32(*reinterpret_cast<uint32_t *>(&t));
- return *reinterpret_cast<T *>(&r);
- } else if (sizeof(T) == 8) {
- auto r = __builtin_bswap64(*reinterpret_cast<uint64_t *>(&t));
- return *reinterpret_cast<T *>(&r);
- } else {
- assert(0);
- }
- #if defined(_MSC_VER)
- #pragma pop_macro("__builtin_bswap16")
- #pragma pop_macro("__builtin_bswap32")
- #pragma pop_macro("__builtin_bswap64")
- #endif
- #endif
- }
- template<typename T> T ReadScalar(const void *p) {
- return EndianScalar(*reinterpret_cast<const T *>(p));
- }
- template<typename T> void WriteScalar(void *p, T t) {
- *reinterpret_cast<T *>(p) = EndianScalar(t);
- }
- template<typename T> size_t AlignOf() {
- #ifdef _MSC_VER
- return __alignof(T);
- #else
- return alignof(T);
- #endif
- }
- // When we read serialized data from memory, in the case of most scalars,
- // we want to just read T, but in the case of Offset, we want to actually
- // perform the indirection and return a pointer.
- // The template specialization below does just that.
- // It is wrapped in a struct since function templates can't overload on the
- // return type like this.
- // The typedef is for the convenience of callers of this function
- // (avoiding the need for a trailing return decltype)
- template<typename T> struct IndirectHelper {
- typedef T return_type;
- static const size_t element_stride = sizeof(T);
- static return_type Read(const uint8_t *p, uoffset_t i) {
- return EndianScalar((reinterpret_cast<const T *>(p))[i]);
- }
- };
- template<typename T> struct IndirectHelper<Offset<T>> {
- typedef const T *return_type;
- static const size_t element_stride = sizeof(uoffset_t);
- static return_type Read(const uint8_t *p, uoffset_t i) {
- p += i * sizeof(uoffset_t);
- return reinterpret_cast<return_type>(p + ReadScalar<uoffset_t>(p));
- }
- };
- template<typename T> struct IndirectHelper<const T *> {
- typedef const T *return_type;
- static const size_t element_stride = sizeof(T);
- static return_type Read(const uint8_t *p, uoffset_t i) {
- return reinterpret_cast<const T *>(p + i * sizeof(T));
- }
- };
- // An STL compatible iterator implementation for Vector below, effectively
- // calling Get() for every element.
- template<typename T, bool bConst>
- struct VectorIterator : public
- std::iterator < std::input_iterator_tag,
- typename std::conditional < bConst,
- const typename IndirectHelper<T>::return_type,
- typename IndirectHelper<T>::return_type > ::type, uoffset_t > {
- typedef std::iterator<std::input_iterator_tag,
- typename std::conditional<bConst,
- const typename IndirectHelper<T>::return_type,
- typename IndirectHelper<T>::return_type>::type, uoffset_t> super_type;
- public:
- VectorIterator(const uint8_t *data, uoffset_t i) :
- data_(data + IndirectHelper<T>::element_stride * i) {};
- VectorIterator(const VectorIterator &other) : data_(other.data_) {}
- VectorIterator(VectorIterator &&other) : data_(std::move(other.data_)) {}
- VectorIterator &operator=(const VectorIterator &other) {
- data_ = other.data_;
- return *this;
- }
- VectorIterator &operator=(VectorIterator &&other) {
- data_ = other.data_;
- return *this;
- }
- bool operator==(const VectorIterator& other) const {
- return data_ == other.data_;
- }
- bool operator!=(const VectorIterator& other) const {
- return data_ != other.data_;
- }
- ptrdiff_t operator-(const VectorIterator& other) const {
- return (data_ - other.data_) / IndirectHelper<T>::element_stride;
- }
- typename super_type::value_type operator *() const {
- return IndirectHelper<T>::Read(data_, 0);
- }
- typename super_type::value_type operator->() const {
- return IndirectHelper<T>::Read(data_, 0);
- }
- VectorIterator &operator++() {
- data_ += IndirectHelper<T>::element_stride;
- return *this;
- }
- VectorIterator operator++(int) {
- VectorIterator temp(data_);
- data_ += IndirectHelper<T>::element_stride;
- return temp;
- }
- private:
- const uint8_t *data_;
- };
- // This is used as a helper type for accessing vectors.
- // Vector::data() assumes the vector elements start after the length field.
- template<typename T> class Vector {
- public:
- typedef VectorIterator<T, false> iterator;
- typedef VectorIterator<T, true> const_iterator;
- uoffset_t size() const { return EndianScalar(length_); }
- // Deprecated: use size(). Here for backwards compatibility.
- uoffset_t Length() const { return size(); }
- typedef typename IndirectHelper<T>::return_type return_type;
- return_type Get(uoffset_t i) const {
- assert(i < size());
- return IndirectHelper<T>::Read(Data(), i);
- }
- // If this is a Vector of enums, T will be its storage type, not the enum
- // type. This function makes it convenient to retrieve value with enum
- // type E.
- template<typename E> E GetEnum(uoffset_t i) const {
- return static_cast<E>(Get(i));
- }
- const void *GetStructFromOffset(size_t o) const {
- return reinterpret_cast<const void *>(Data() + o);
- }
- iterator begin() { return iterator(Data(), 0); }
- const_iterator begin() const { return const_iterator(Data(), 0); }
- iterator end() { return iterator(Data(), length_); }
- const_iterator end() const { return const_iterator(Data(), length_); }
- // The raw data in little endian format. Use with care.
- const uint8_t *Data() const {
- return reinterpret_cast<const uint8_t *>(&length_ + 1);
- }
- protected:
- // This class is only used to access pre-existing data. Don't ever
- // try to construct these manually.
- Vector();
- uoffset_t length_;
- };
- struct String : public Vector<char> {
- const char *c_str() const { return reinterpret_cast<const char *>(Data()); }
- };
- // Simple indirection for buffer allocation, to allow this to be overridden
- // with custom allocation (see the FlatBufferBuilder constructor).
- class simple_allocator {
- public:
- virtual ~simple_allocator(){}
- virtual uint8_t *allocate(size_t size) const { return new uint8_t[size]; }
- virtual void deallocate(uint8_t *p) const { delete[] p; }
- };
- // This is a minimal replication of std::vector<uint8_t> functionality,
- // except growing from higher to lower addresses. i.e push_back() inserts data
- // in the lowest address in the vector.
- class vector_downward {
- public:
- explicit vector_downward(size_t initial_size,
- const simple_allocator &allocator)
- : reserved_(initial_size),
- buf_(allocator.allocate(reserved_)),
- cur_(buf_ + reserved_),
- allocator_(allocator) {
- assert((initial_size & (sizeof(largest_scalar_t) - 1)) == 0);
- }
- ~vector_downward() { allocator_.deallocate(buf_); }
- void clear() { cur_ = buf_ + reserved_; }
- size_t growth_policy(size_t bytes) {
- return (bytes / 2) & ~(sizeof(largest_scalar_t) - 1);
- }
- uint8_t *make_space(size_t len) {
- if (buf_ > cur_ - len) {
- auto old_size = size();
- reserved_ += std::max(len, growth_policy(reserved_));
- auto new_buf = allocator_.allocate(reserved_);
- auto new_cur = new_buf + reserved_ - old_size;
- memcpy(new_cur, cur_, old_size);
- cur_ = new_cur;
- allocator_.deallocate(buf_);
- buf_ = new_buf;
- }
- cur_ -= len;
- // Beyond this, signed offsets may not have enough range:
- // (FlatBuffers > 2GB not supported).
- assert(size() < (1UL << (sizeof(soffset_t) * 8 - 1)) - 1);
- return cur_;
- }
- uoffset_t size() const {
- return static_cast<uoffset_t>(reserved_ - (cur_ - buf_));
- }
- uint8_t *data() const { return cur_; }
- uint8_t *data_at(size_t offset) { return buf_ + reserved_ - offset; }
- // push() & fill() are most frequently called with small byte counts (<= 4),
- // which is why we're using loops rather than calling memcpy/memset.
- void push(const uint8_t *bytes, size_t num) {
- auto dest = make_space(num);
- for (size_t i = 0; i < num; i++) dest[i] = bytes[i];
- }
- void fill(size_t zero_pad_bytes) {
- auto dest = make_space(zero_pad_bytes);
- for (size_t i = 0; i < zero_pad_bytes; i++) dest[i] = 0;
- }
- void pop(size_t bytes_to_remove) { cur_ += bytes_to_remove; }
- private:
- // You shouldn't really be copying instances of this class.
- vector_downward(const vector_downward &);
- vector_downward &operator=(const vector_downward &);
- size_t reserved_;
- uint8_t *buf_;
- uint8_t *cur_; // Points at location between empty (below) and used (above).
- const simple_allocator &allocator_;
- };
- // Converts a Field ID to a virtual table offset.
- inline voffset_t FieldIndexToOffset(voffset_t field_id) {
- // Should correspond to what EndTable() below builds up.
- const int fixed_fields = 2; // Vtable size and Object Size.
- return (field_id + fixed_fields) * sizeof(voffset_t);
- }
- // Computes how many bytes you'd have to pad to be able to write an
- // "scalar_size" scalar if the buffer had grown to "buf_size" (downwards in
- // memory).
- inline size_t PaddingBytes(size_t buf_size, size_t scalar_size) {
- return ((~buf_size) + 1) & (scalar_size - 1);
- }
- // Helper class to hold data needed in creation of a flat buffer.
- // To serialize data, you typically call one of the Create*() functions in
- // the generated code, which in turn call a sequence of StartTable/PushElement/
- // AddElement/EndTable, or the builtin CreateString/CreateVector functions.
- // Do this is depth-first order to build up a tree to the root.
- // Finish() wraps up the buffer ready for transport.
- class FlatBufferBuilder {
- public:
- explicit FlatBufferBuilder(uoffset_t initial_size = 1024,
- const simple_allocator *allocator = nullptr)
- : buf_(initial_size, allocator ? *allocator : default_allocator),
- minalign_(1), force_defaults_(false) {
- offsetbuf_.reserve(16); // Avoid first few reallocs.
- vtables_.reserve(16);
- EndianCheck();
- }
- // Reset all the state in this FlatBufferBuilder so it can be reused
- // to construct another buffer.
- void Clear() {
- buf_.clear();
- offsetbuf_.clear();
- vtables_.clear();
- }
- // The current size of the serialized buffer, counting from the end.
- uoffset_t GetSize() const { return buf_.size(); }
- // Get the serialized buffer (after you call Finish()).
- uint8_t *GetBufferPointer() const { return buf_.data(); }
- void ForceDefaults(bool fd) { force_defaults_ = fd; }
- void Pad(size_t num_bytes) { buf_.fill(num_bytes); }
- void Align(size_t elem_size) {
- if (elem_size > minalign_) minalign_ = elem_size;
- buf_.fill(PaddingBytes(buf_.size(), elem_size));
- }
- void PushBytes(const uint8_t *bytes, size_t size) {
- buf_.push(bytes, size);
- }
- void PopBytes(size_t amount) { buf_.pop(amount); }
- template<typename T> void AssertScalarT() {
- // The code assumes power of 2 sizes and endian-swap-ability.
- static_assert(std::is_scalar<T>::value
- // The Offset<T> type is essentially a scalar but fails is_scalar.
- || sizeof(T) == sizeof(Offset<void>),
- "T must be a scalar type");
- }
- // Write a single aligned scalar to the buffer
- template<typename T> uoffset_t PushElement(T element) {
- AssertScalarT<T>();
- T litle_endian_element = EndianScalar(element);
- Align(sizeof(T));
- PushBytes(reinterpret_cast<uint8_t *>(&litle_endian_element), sizeof(T));
- return GetSize();
- }
- template<typename T> uoffset_t PushElement(Offset<T> off) {
- // Special case for offsets: see ReferTo below.
- return PushElement(ReferTo(off.o));
- }
- // When writing fields, we track where they are, so we can create correct
- // vtables later.
- void TrackField(voffset_t field, uoffset_t off) {
- FieldLoc fl = { off, field };
- offsetbuf_.push_back(fl);
- }
- // Like PushElement, but additionally tracks the field this represents.
- template<typename T> void AddElement(voffset_t field, T e, T def) {
- // We don't serialize values equal to the default.
- if (e == def && !force_defaults_) return;
- auto off = PushElement(e);
- TrackField(field, off);
- }
- template<typename T> void AddOffset(voffset_t field, Offset<T> off) {
- if (!off.o) return; // An offset of 0 means NULL, don't store.
- AddElement(field, ReferTo(off.o), static_cast<uoffset_t>(0));
- }
- template<typename T> void AddStruct(voffset_t field, const T *structptr) {
- if (!structptr) return; // Default, don't store.
- Align(AlignOf<T>());
- PushBytes(reinterpret_cast<const uint8_t *>(structptr), sizeof(T));
- TrackField(field, GetSize());
- }
- void AddStructOffset(voffset_t field, uoffset_t off) {
- TrackField(field, off);
- }
- // Offsets initially are relative to the end of the buffer (downwards).
- // This function converts them to be relative to the current location
- // in the buffer (when stored here), pointing upwards.
- uoffset_t ReferTo(uoffset_t off) {
- Align(sizeof(uoffset_t)); // To ensure GetSize() below is correct.
- assert(off <= GetSize()); // Must refer to something already in buffer.
- return GetSize() - off + sizeof(uoffset_t);
- }
- void NotNested() {
- // If you hit this, you're trying to construct an object when another
- // hasn't finished yet.
- assert(!offsetbuf_.size());
- }
- // From generated code (or from the parser), we call StartTable/EndTable
- // with a sequence of AddElement calls in between.
- uoffset_t StartTable() {
- NotNested();
- return GetSize();
- }
- // This finishes one serialized object by generating the vtable if it's a
- // table, comparing it against existing vtables, and writing the
- // resulting vtable offset.
- uoffset_t EndTable(uoffset_t start, voffset_t numfields) {
- // Write the vtable offset, which is the start of any Table.
- // We fill it's value later.
- auto vtableoffsetloc = PushElement<uoffset_t>(0);
- // Write a vtable, which consists entirely of voffset_t elements.
- // It starts with the number of offsets, followed by a type id, followed
- // by the offsets themselves. In reverse:
- buf_.fill(numfields * sizeof(voffset_t));
- auto table_object_size = vtableoffsetloc - start;
- assert(table_object_size < 0x10000); // Vtable use 16bit offsets.
- PushElement<voffset_t>(static_cast<voffset_t>(table_object_size));
- PushElement<voffset_t>(FieldIndexToOffset(numfields));
- // Write the offsets into the table
- for (auto field_location = offsetbuf_.begin();
- field_location != offsetbuf_.end();
- ++field_location) {
- auto pos = static_cast<voffset_t>(vtableoffsetloc - field_location->off);
- // If this asserts, it means you've set a field twice.
- assert(!ReadScalar<voffset_t>(buf_.data() + field_location->id));
- WriteScalar<voffset_t>(buf_.data() + field_location->id, pos);
- }
- offsetbuf_.clear();
- auto vt1 = reinterpret_cast<voffset_t *>(buf_.data());
- auto vt1_size = ReadScalar<voffset_t>(vt1);
- auto vt_use = GetSize();
- // See if we already have generated a vtable with this exact same
- // layout before. If so, make it point to the old one, remove this one.
- for (auto it = vtables_.begin(); it != vtables_.end(); ++it) {
- if (memcmp(buf_.data_at(*it), vt1, vt1_size)) continue;
- vt_use = *it;
- buf_.pop(GetSize() - vtableoffsetloc);
- break;
- }
- // If this is a new vtable, remember it.
- if (vt_use == GetSize()) {
- vtables_.push_back(vt_use);
- }
- // Fill the vtable offset we created above.
- // The offset points from the beginning of the object to where the
- // vtable is stored.
- // Offsets default direction is downward in memory for future format
- // flexibility (storing all vtables at the start of the file).
- WriteScalar(buf_.data_at(vtableoffsetloc),
- static_cast<soffset_t>(vt_use) -
- static_cast<soffset_t>(vtableoffsetloc));
- return vtableoffsetloc;
- }
- // This checks a required field has been set in a given table that has
- // just been constructed.
- template<typename T> void Required(Offset<T> table, voffset_t field) {
- auto table_ptr = buf_.data_at(table.o);
- auto vtable_ptr = table_ptr - ReadScalar<uoffset_t>(table_ptr);
- bool ok = ReadScalar<voffset_t>(vtable_ptr + field) != 0;
- // If this fails, the caller will show what field needs to be set.
- assert(ok);
- (void)ok;
- }
- uoffset_t StartStruct(size_t alignment) {
- Align(alignment);
- return GetSize();
- }
- uoffset_t EndStruct() { return GetSize(); }
- void ClearOffsets() { offsetbuf_.clear(); }
- // Aligns such that when "len" bytes are written, an object can be written
- // after it with "alignment" without padding.
- void PreAlign(size_t len, size_t alignment) {
- buf_.fill(PaddingBytes(GetSize() + len, alignment));
- }
- template<typename T> void PreAlign(size_t len) {
- AssertScalarT<T>();
- PreAlign(len, sizeof(T));
- }
- // Functions to store strings, which are allowed to contain any binary data.
- Offset<String> CreateString(const char *str, size_t len) {
- NotNested();
- PreAlign<uoffset_t>(len + 1); // Always 0-terminated.
- buf_.fill(1);
- PushBytes(reinterpret_cast<const uint8_t *>(str), len);
- PushElement(static_cast<uoffset_t>(len));
- return Offset<String>(GetSize());
- }
- Offset<String> CreateString(const char *str) {
- return CreateString(str, strlen(str));
- }
- Offset<String> CreateString(const std::string &str) {
- return CreateString(str.c_str(), str.length());
- }
- uoffset_t EndVector(size_t len) {
- return PushElement(static_cast<uoffset_t>(len));
- }
- void StartVector(size_t len, size_t elemsize) {
- PreAlign<uoffset_t>(len * elemsize);
- PreAlign(len * elemsize, elemsize); // Just in case elemsize > uoffset_t.
- }
- uint8_t *ReserveElements(size_t len, size_t elemsize) {
- return buf_.make_space(len * elemsize);
- }
- template<typename T> Offset<Vector<T>> CreateVector(const T *v, size_t len) {
- NotNested();
- StartVector(len, sizeof(T));
- for (auto i = len; i > 0; ) {
- PushElement(v[--i]);
- }
- return Offset<Vector<T>>(EndVector(len));
- }
- // Specialized version for non-copying use cases. Data to be written later.
- // After calling this function, GetBufferPointer() can be cast to the
- // corresponding Vector<> type to write the data (through Data()).
- template<typename T> Offset<Vector<T>> CreateUninitializedVector(size_t len) {
- NotNested();
- StartVector(len, sizeof(T));
- buf_.make_space(len * sizeof(T));
- return Offset<Vector<T>>(EndVector(len));
- }
- template<typename T> Offset<Vector<T>> CreateVector(const std::vector<T> &v){
- return CreateVector(v.data(), v.size());
- }
- template<typename T> Offset<Vector<const T *>> CreateVectorOfStructs(
- const T *v, size_t len) {
- NotNested();
- StartVector(len * sizeof(T) / AlignOf<T>(), AlignOf<T>());
- PushBytes(reinterpret_cast<const uint8_t *>(v), sizeof(T) * len);
- return Offset<Vector<const T *>>(EndVector(len));
- }
- template<typename T> Offset<Vector<const T *>> CreateVectorOfStructs(
- const std::vector<T> &v) {
- return CreateVectorOfStructs(v.data(), v.size());
- }
- static const size_t kFileIdentifierLength = 4;
- // Finish serializing a buffer by writing the root offset.
- // If a file_identifier is given, the buffer will be prefix with a standard
- // FlatBuffers file header.
- template<typename T> void Finish(Offset<T> root,
- const char *file_identifier = nullptr) {
- // This will cause the whole buffer to be aligned.
- PreAlign(sizeof(uoffset_t) + (file_identifier ? kFileIdentifierLength : 0),
- minalign_);
- if (file_identifier) {
- assert(strlen(file_identifier) == kFileIdentifierLength);
- buf_.push(reinterpret_cast<const uint8_t *>(file_identifier),
- kFileIdentifierLength);
- }
- PushElement(ReferTo(root.o)); // Location of root.
- }
- private:
- // You shouldn't really be copying instances of this class.
- FlatBufferBuilder(const FlatBufferBuilder &);
- FlatBufferBuilder &operator=(const FlatBufferBuilder &);
- struct FieldLoc {
- uoffset_t off;
- voffset_t id;
- };
- simple_allocator default_allocator;
- vector_downward buf_;
- // Accumulating offsets of table members while it is being built.
- std::vector<FieldLoc> offsetbuf_;
- std::vector<uoffset_t> vtables_; // todo: Could make this into a map?
- size_t minalign_;
- bool force_defaults_; // Serialize values equal to their defaults anyway.
- };
- // Helper to get a typed pointer to the root object contained in the buffer.
- template<typename T> const T *GetRoot(const void *buf) {
- EndianCheck();
- return reinterpret_cast<const T *>(reinterpret_cast<const uint8_t *>(buf) +
- EndianScalar(*reinterpret_cast<const uoffset_t *>(buf)));
- }
- // Helper to see if the identifier in a buffer has the expected value.
- inline bool BufferHasIdentifier(const void *buf, const char *identifier) {
- return strncmp(reinterpret_cast<const char *>(buf) + sizeof(uoffset_t),
- identifier, FlatBufferBuilder::kFileIdentifierLength) == 0;
- }
- // Helper class to verify the integrity of a FlatBuffer
- class Verifier {
- public:
- Verifier(const uint8_t *buf, size_t buf_len, size_t _max_depth = 64,
- size_t _max_tables = 1000000)
- : buf_(buf), end_(buf + buf_len), depth_(0), max_depth_(_max_depth),
- num_tables_(0), max_tables_(_max_tables)
- {}
- // Central location where any verification failures register.
- bool Check(bool ok) const {
- #ifdef FLATBUFFERS_DEBUG_VERIFICATION_FAILURE
- assert(ok);
- #endif
- return ok;
- }
- // Verify any range within the buffer.
- bool Verify(const void *elem, size_t elem_len) const {
- return Check(elem >= buf_ && elem <= end_ - elem_len);
- }
- // Verify a range indicated by sizeof(T).
- template<typename T> bool Verify(const void *elem) const {
- return Verify(elem, sizeof(T));
- }
- // Verify a pointer (may be NULL) of a table type.
- template<typename T> bool VerifyTable(const T *table) {
- return !table || table->Verify(*this);
- }
- // Verify a pointer (may be NULL) of any vector type.
- template<typename T> bool Verify(const Vector<T> *vec) const {
- const uint8_t *end;
- return !vec ||
- VerifyVector(reinterpret_cast<const uint8_t *>(vec), sizeof(T),
- &end);
- }
- // Verify a pointer (may be NULL) to string.
- bool Verify(const String *str) const {
- const uint8_t *end;
- return !str ||
- (VerifyVector(reinterpret_cast<const uint8_t *>(str), 1, &end) &&
- Verify(end, 1) && // Must have terminator
- Check(*end == '\0')); // Terminating byte must be 0.
- }
- // Common code between vectors and strings.
- bool VerifyVector(const uint8_t *vec, size_t elem_size,
- const uint8_t **end) const {
- // Check we can read the size field.
- if (!Verify<uoffset_t>(vec)) return false;
- // Check the whole array. If this is a string, the byte past the array
- // must be 0.
- auto size = ReadScalar<uoffset_t>(vec);
- auto byte_size = sizeof(size) + elem_size * size;
- *end = vec + byte_size;
- return Verify(vec, byte_size);
- }
- // Special case for string contents, after the above has been called.
- bool VerifyVectorOfStrings(const Vector<Offset<String>> *vec) const {
- if (vec) {
- for (uoffset_t i = 0; i < vec->size(); i++) {
- if (!Verify(vec->Get(i))) return false;
- }
- }
- return true;
- }
- // Special case for table contents, after the above has been called.
- template<typename T> bool VerifyVectorOfTables(const Vector<Offset<T>> *vec) {
- if (vec) {
- for (uoffset_t i = 0; i < vec->size(); i++) {
- if (!vec->Get(i)->Verify(*this)) return false;
- }
- }
- return true;
- }
- // Verify this whole buffer, starting with root type T.
- template<typename T> bool VerifyBuffer() {
- // Call T::Verify, which must be in the generated code for this type.
- return Verify<uoffset_t>(buf_) &&
- reinterpret_cast<const T *>(buf_ + ReadScalar<uoffset_t>(buf_))->
- Verify(*this);
- }
- // Called at the start of a table to increase counters measuring data
- // structure depth and amount, and possibly bails out with false if
- // limits set by the constructor have been hit. Needs to be balanced
- // with EndTable().
- bool VerifyComplexity() {
- depth_++;
- num_tables_++;
- return Check(depth_ <= max_depth_ && num_tables_ <= max_tables_);
- }
- // Called at the end of a table to pop the depth count.
- bool EndTable() {
- depth_--;
- return true;
- }
- private:
- const uint8_t *buf_;
- const uint8_t *end_;
- size_t depth_;
- size_t max_depth_;
- size_t num_tables_;
- size_t max_tables_;
- };
- // "structs" are flat structures that do not have an offset table, thus
- // always have all members present and do not support forwards/backwards
- // compatible extensions.
- class Struct {
- public:
- template<typename T> T GetField(uoffset_t o) const {
- return ReadScalar<T>(&data_[o]);
- }
- template<typename T> T GetPointer(uoffset_t o) const {
- auto p = &data_[o];
- return reinterpret_cast<T>(p + ReadScalar<uoffset_t>(p));
- }
- template<typename T> T GetStruct(uoffset_t o) const {
- return reinterpret_cast<T>(&data_[o]);
- }
- private:
- uint8_t data_[1];
- };
- // "tables" use an offset table (possibly shared) that allows fields to be
- // omitted and added at will, but uses an extra indirection to read.
- class Table {
- public:
- // This gets the field offset for any of the functions below it, or 0
- // if the field was not present.
- voffset_t GetOptionalFieldOffset(voffset_t field) const {
- // The vtable offset is always at the start.
- auto vtable = data_ - ReadScalar<soffset_t>(data_);
- // The first element is the size of the vtable (fields + type id + itself).
- auto vtsize = ReadScalar<voffset_t>(vtable);
- // If the field we're accessing is outside the vtable, we're reading older
- // data, so it's the same as if the offset was 0 (not present).
- return field < vtsize ? ReadScalar<voffset_t>(vtable + field) : 0;
- }
- template<typename T> T GetField(voffset_t field, T defaultval) const {
- auto field_offset = GetOptionalFieldOffset(field);
- return field_offset ? ReadScalar<T>(data_ + field_offset) : defaultval;
- }
- template<typename P> P GetPointer(voffset_t field) const {
- auto field_offset = GetOptionalFieldOffset(field);
- auto p = data_ + field_offset;
- return field_offset
- ? reinterpret_cast<P>(p + ReadScalar<uoffset_t>(p))
- : nullptr;
- }
- template<typename P> P GetStruct(voffset_t field) const {
- auto field_offset = GetOptionalFieldOffset(field);
- return field_offset ? reinterpret_cast<P>(data_ + field_offset) : nullptr;
- }
- template<typename T> void SetField(voffset_t field, T val) {
- auto field_offset = GetOptionalFieldOffset(field);
- // If this asserts, you're trying to set a field that's not there
- // (or should we return a bool instead?).
- // check if it exists first using CheckField()
- assert(field_offset);
- WriteScalar(data_ + field_offset, val);
- }
- bool CheckField(voffset_t field) const {
- return GetOptionalFieldOffset(field) != 0;
- }
- // Verify the vtable of this table.
- // Call this once per table, followed by VerifyField once per field.
- bool VerifyTableStart(Verifier &verifier) const {
- // Check the vtable offset.
- if (!verifier.Verify<soffset_t>(data_)) return false;
- auto vtable = data_ - ReadScalar<soffset_t>(data_);
- // Check the vtable size field, then check vtable fits in its entirety.
- return verifier.VerifyComplexity() &&
- verifier.Verify<voffset_t>(vtable) &&
- verifier.Verify(vtable, ReadScalar<voffset_t>(vtable));
- }
- // Verify a particular field.
- template<typename T> bool VerifyField(const Verifier &verifier,
- voffset_t field) const {
- // Calling GetOptionalFieldOffset should be safe now thanks to
- // VerifyTable().
- auto field_offset = GetOptionalFieldOffset(field);
- // Check the actual field.
- return !field_offset || verifier.Verify<T>(data_ + field_offset);
- }
- // VerifyField for required fields.
- template<typename T> bool VerifyFieldRequired(const Verifier &verifier,
- voffset_t field) const {
- auto field_offset = GetOptionalFieldOffset(field);
- return verifier.Check(field_offset != 0) &&
- verifier.Verify<T>(data_ + field_offset);
- }
- private:
- // private constructor & copy constructor: you obtain instances of this
- // class by pointing to existing data only
- Table();
- Table(const Table &other);
- uint8_t data_[1];
- };
- // Utility function for reverse lookups on the EnumNames*() functions
- // (in the generated C++ code)
- // names must be NULL terminated.
- inline int LookupEnum(const char **names, const char *name) {
- for (const char **p = names; *p; p++)
- if (!strcmp(*p, name))
- return static_cast<int>(p - names);
- return -1;
- }
- // These macros allow us to layout a struct with a guarantee that they'll end
- // up looking the same on different compilers and platforms.
- // It does this by disallowing the compiler to do any padding, and then
- // does padding itself by inserting extra padding fields that make every
- // element aligned to its own size.
- // Additionally, it manually sets the alignment of the struct as a whole,
- // which is typically its largest element, or a custom size set in the schema
- // by the force_align attribute.
- // These are used in the generated code only.
- #if defined(_MSC_VER)
- #define MANUALLY_ALIGNED_STRUCT(alignment) \
- __pragma(pack(1)); \
- struct __declspec(align(alignment))
- #define STRUCT_END(name, size) \
- __pragma(pack()); \
- static_assert(sizeof(name) == size, "compiler breaks packing rules")
- #elif defined(__GNUC__) || defined(__clang__)
- #define MANUALLY_ALIGNED_STRUCT(alignment) \
- _Pragma("pack(1)") \
- struct __attribute__((aligned(alignment)))
- #define STRUCT_END(name, size) \
- _Pragma("pack()") \
- static_assert(sizeof(name) == size, "compiler breaks packing rules")
- #else
- #error Unknown compiler, please define structure alignment macros
- #endif
- // String which identifies the current version of FlatBuffers.
- // flatbuffer_version_string is used by Google developers to identify which
- // applications uploaded to Google Play are using this library. This allows
- // the development team at Google to determine the popularity of the library.
- // How it works: Applications that are uploaded to the Google Play Store are
- // scanned for this version string. We track which applications are using it
- // to measure popularity. You are free to remove it (of course) but we would
- // appreciate if you left it in.
- // Weak linkage is culled by VS & doesn't work on cygwin.
- #if !defined(_WIN32) && !defined(__CYGWIN__)
- extern volatile __attribute__((weak)) const char *flatbuffer_version_string;
- volatile __attribute__((weak)) const char *flatbuffer_version_string =
- "FlatBuffers "
- FLATBUFFERS_STRING(FLATBUFFERS_VERSION_MAJOR) "."
- FLATBUFFERS_STRING(FLATBUFFERS_VERSION_MINOR) "."
- FLATBUFFERS_STRING(FLATBUFFERS_VERSION_REVISION);
- #endif // !defined(_WIN32) && !defined(__CYGWIN__)
- } // namespace flatbuffers
- #endif // FLATBUFFERS_H_
|