/**************************************************************************** Copyright (c) 2008-2010 Ricardo Quesada Copyright (c) 2010-2012 cocos2d-x.org Copyright (c) 2011 Zynga Inc. Copyright (c) 2013-2016 Chukong Technologies Inc. Copyright (c) 2017-2018 Xiamen Yaji Software Co., Ltd. http://www.cocos2d-x.org Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ****************************************************************************/ #include "base/CCScheduler.h" #include "base/ccMacros.h" #include "base/CCDirector.h" #include "base/utlist.h" #include "base/ccCArray.h" #include "base/CCScriptSupport.h" NS_CC_BEGIN // data structures // A list double-linked list used for "updates with priority" typedef struct _listEntry { struct _listEntry *prev, *next; ccSchedulerFunc callback; void *target; int priority; bool paused; bool markedForDeletion; // selector will no longer be called and entry will be removed at end of the next tick } tListEntry; typedef struct _hashUpdateEntry { tListEntry **list; // Which list does it belong to ? tListEntry *entry; // entry in the list void *target; ccSchedulerFunc callback; UT_hash_handle hh; } tHashUpdateEntry; // Hash Element used for "selectors with interval" typedef struct _hashSelectorEntry { ccArray *timers; void *target; int timerIndex; Timer *currentTimer; bool paused; UT_hash_handle hh; } tHashTimerEntry; // implementation Timer Timer::Timer() : _scheduler(nullptr) , _elapsed(-1) , _runForever(false) , _useDelay(false) , _timesExecuted(0) , _repeat(0) , _delay(0.0f) , _interval(0.0f) , _aborted(false) { } void Timer::setupTimerWithInterval(float seconds, unsigned int repeat, float delay) { _elapsed = -1; _interval = seconds; _delay = delay; _useDelay = (_delay > 0.0f) ? true : false; _repeat = repeat; _runForever = (_repeat == CC_REPEAT_FOREVER) ? true : false; _timesExecuted = 0; } void Timer::update(float dt) { if (_elapsed == -1) { _elapsed = 0; _timesExecuted = 0; return; } // accumulate elapsed time _elapsed += dt; // deal with delay if (_useDelay) { if (_elapsed < _delay) { return; } _timesExecuted += 1; // important to increment before call trigger trigger(_delay); _elapsed = _elapsed - _delay; _useDelay = false; // after delay, the rest time should compare with interval if (isExhausted()) { //unschedule timer cancel(); return; } } // if _interval == 0, should trigger once every frame float interval = (_interval > 0) ? _interval : _elapsed; while ((_elapsed >= interval) && !_aborted) { _timesExecuted += 1; // important to increment before call trigger trigger(interval); _elapsed -= interval; if (isExhausted()) { cancel(); break; } if (_elapsed <= 0.f) { break; } } } bool Timer::isExhausted() const { return !_runForever && _timesExecuted > _repeat; } // TimerTargetSelector TimerTargetSelector::TimerTargetSelector() : _target(nullptr) , _selector(nullptr) { } bool TimerTargetSelector::initWithSelector(Scheduler* scheduler, SEL_SCHEDULE selector, Ref* target, float seconds, unsigned int repeat, float delay) { _scheduler = scheduler; _target = target; _selector = selector; setupTimerWithInterval(seconds, repeat, delay); return true; } void TimerTargetSelector::trigger(float dt) { if (_target && _selector) { (_target->*_selector)(dt); } } void TimerTargetSelector::cancel() { _scheduler->unschedule(_selector, _target); } // TimerTargetCallback TimerTargetCallback::TimerTargetCallback() : _target(nullptr) , _callback(nullptr) { } bool TimerTargetCallback::initWithCallback(Scheduler* scheduler, const ccSchedulerFunc& callback, void *target, const std::string& key, float seconds, unsigned int repeat, float delay) { _scheduler = scheduler; _target = target; _callback = callback; _key = key; setupTimerWithInterval(seconds, repeat, delay); return true; } void TimerTargetCallback::trigger(float dt) { if (_callback) { _callback(dt); } } void TimerTargetCallback::cancel() { _scheduler->unschedule(_key, _target); } #if CC_ENABLE_SCRIPT_BINDING // TimerScriptHandler bool TimerScriptHandler::initWithScriptHandler(int handler, float seconds) { _scriptHandler = handler; _elapsed = -1; _interval = seconds; return true; } void TimerScriptHandler::trigger(float dt) { if (0 != _scriptHandler) { SchedulerScriptData data(_scriptHandler,dt); ScriptEvent event(kScheduleEvent,&data); ScriptEngineManager::getInstance()->getScriptEngine()->sendEvent(&event); } } void TimerScriptHandler::cancel() { } #endif // implementation of Scheduler // Priority level reserved for system services. const int Scheduler::PRIORITY_SYSTEM = INT_MIN; // Minimum priority level for user scheduling. const int Scheduler::PRIORITY_NON_SYSTEM_MIN = PRIORITY_SYSTEM + 1; Scheduler::Scheduler(void) : _timeScale(1.0f) , _updatesNegList(nullptr) , _updates0List(nullptr) , _updatesPosList(nullptr) , _hashForUpdates(nullptr) , _hashForTimers(nullptr) , _currentTarget(nullptr) , _currentTargetSalvaged(false) , _updateHashLocked(false) #if CC_ENABLE_SCRIPT_BINDING , _scriptHandlerEntries(20) #endif { // I don't expect to have more than 30 functions to all per frame _functionsToPerform.reserve(30); } Scheduler::~Scheduler(void) { unscheduleAll(); } void Scheduler::removeHashElement(_hashSelectorEntry *element) { ccArrayFree(element->timers); HASH_DEL(_hashForTimers, element); free(element); } void Scheduler::schedule(const ccSchedulerFunc& callback, void *target, float interval, bool paused, const std::string& key) { this->schedule(callback, target, interval, CC_REPEAT_FOREVER, 0.0f, paused, key); } void Scheduler::schedule(const ccSchedulerFunc& callback, void *target, float interval, unsigned int repeat, float delay, bool paused, const std::string& key) { CCASSERT(target, "Argument target must be non-nullptr"); CCASSERT(!key.empty(), "key should not be empty!"); tHashTimerEntry *element = nullptr; HASH_FIND_PTR(_hashForTimers, &target, element); if (! element) { element = (tHashTimerEntry *)calloc(sizeof(*element), 1); element->target = target; HASH_ADD_PTR(_hashForTimers, target, element); // Is this the 1st element ? Then set the pause level to all the selectors of this target element->paused = paused; } else { CCASSERT(element->paused == paused, "element's paused should be paused!"); } if (element->timers == nullptr) { element->timers = ccArrayNew(10); } else { for (int i = 0; i < element->timers->num; ++i) { TimerTargetCallback *timer = dynamic_cast(element->timers->arr[i]); if (timer && !timer->isExhausted() && key == timer->getKey()) { CCLOG("CCScheduler#schedule. Reiniting timer with interval %.4f, repeat %u, delay %.4f", interval, repeat, delay); timer->setupTimerWithInterval(interval, repeat, delay); return; } } ccArrayEnsureExtraCapacity(element->timers, 1); } TimerTargetCallback *timer = new (std::nothrow) TimerTargetCallback(); timer->initWithCallback(this, callback, target, key, interval, repeat, delay); ccArrayAppendObject(element->timers, timer); timer->release(); } void Scheduler::unschedule(const std::string &key, void *target) { // explicit handle nil arguments when removing an object if (target == nullptr || key.empty()) { return; } //CCASSERT(target); //CCASSERT(selector); tHashTimerEntry *element = nullptr; HASH_FIND_PTR(_hashForTimers, &target, element); if (element) { for (int i = 0; i < element->timers->num; ++i) { TimerTargetCallback *timer = dynamic_cast(element->timers->arr[i]); if (timer && key == timer->getKey()) { if (timer == element->currentTimer && (! timer->isAborted())) { timer->retain(); timer->setAborted(); } ccArrayRemoveObjectAtIndex(element->timers, i, true); // update timerIndex in case we are in tick:, looping over the actions if (element->timerIndex >= i) { element->timerIndex--; } if (element->timers->num == 0) { if (_currentTarget == element) { _currentTargetSalvaged = true; } else { removeHashElement(element); } } return; } } } } void Scheduler::priorityIn(tListEntry **list, const ccSchedulerFunc& callback, void *target, int priority, bool paused) { tListEntry *listElement = new (std::nothrow) tListEntry(); listElement->callback = callback; listElement->target = target; listElement->priority = priority; listElement->paused = paused; listElement->next = listElement->prev = nullptr; listElement->markedForDeletion = false; // empty list ? if (! *list) { DL_APPEND(*list, listElement); } else { bool added = false; for (tListEntry *element = *list; element; element = element->next) { if (priority < element->priority) { if (element == *list) { DL_PREPEND(*list, listElement); } else { listElement->next = element; listElement->prev = element->prev; element->prev->next = listElement; element->prev = listElement; } added = true; break; } } // Not added? priority has the higher value. Append it. if (! added) { DL_APPEND(*list, listElement); } } // update hash entry for quick access tHashUpdateEntry *hashElement = (tHashUpdateEntry *)calloc(sizeof(*hashElement), 1); hashElement->target = target; hashElement->list = list; hashElement->entry = listElement; memset(&hashElement->hh, 0, sizeof(hashElement->hh)); HASH_ADD_PTR(_hashForUpdates, target, hashElement); } void Scheduler::appendIn(_listEntry **list, const ccSchedulerFunc& callback, void *target, bool paused) { tListEntry *listElement = new (std::nothrow) tListEntry(); listElement->callback = callback; listElement->target = target; listElement->paused = paused; listElement->priority = 0; listElement->markedForDeletion = false; DL_APPEND(*list, listElement); // update hash entry for quicker access tHashUpdateEntry *hashElement = (tHashUpdateEntry *)calloc(sizeof(*hashElement), 1); hashElement->target = target; hashElement->list = list; hashElement->entry = listElement; memset(&hashElement->hh, 0, sizeof(hashElement->hh)); HASH_ADD_PTR(_hashForUpdates, target, hashElement); } void Scheduler::schedulePerFrame(const ccSchedulerFunc& callback, void *target, int priority, bool paused) { tHashUpdateEntry *hashElement = nullptr; HASH_FIND_PTR(_hashForUpdates, &target, hashElement); if (hashElement) { // change priority: should unschedule it first if (hashElement->entry->priority != priority) { unscheduleUpdate(target); } else { // don't add it again //CCLOG("warning: don't update it again"); return; } } // most of the updates are going to be 0, that's way there // is an special list for updates with priority 0 if (priority == 0) { appendIn(&_updates0List, callback, target, paused); } else if (priority < 0) { priorityIn(&_updatesNegList, callback, target, priority, paused); } else { // priority > 0 priorityIn(&_updatesPosList, callback, target, priority, paused); } } bool Scheduler::isScheduled(const std::string& key, const void *target) const { CCASSERT(!key.empty(), "Argument key must not be empty"); CCASSERT(target, "Argument target must be non-nullptr"); tHashTimerEntry *element = nullptr; HASH_FIND_PTR(_hashForTimers, &target, element); if (!element) { return false; } if (element->timers == nullptr) { return false; } for (int i = 0; i < element->timers->num; ++i) { TimerTargetCallback *timer = dynamic_cast(element->timers->arr[i]); if (timer && !timer->isExhausted() && key == timer->getKey()) { return true; } } return false; } void Scheduler::removeUpdateFromHash(struct _listEntry *entry) { tHashUpdateEntry *element = nullptr; HASH_FIND_PTR(_hashForUpdates, &entry->target, element); if (element) { // list entry DL_DELETE(*element->list, element->entry); if (!_updateHashLocked) CC_SAFE_DELETE(element->entry); else { element->entry->markedForDeletion = true; _updateDeleteVector.push_back(element->entry); } // hash entry HASH_DEL(_hashForUpdates, element); free(element); } } void Scheduler::unscheduleUpdate(void *target) { if (target == nullptr) { return; } tHashUpdateEntry *element = nullptr; HASH_FIND_PTR(_hashForUpdates, &target, element); if (element) this->removeUpdateFromHash(element->entry); } void Scheduler::unscheduleAll(void) { unscheduleAllWithMinPriority(PRIORITY_SYSTEM); } void Scheduler::unscheduleAllWithMinPriority(int minPriority) { // Custom Selectors tHashTimerEntry *element = nullptr; tHashTimerEntry *nextElement = nullptr; for (element = _hashForTimers; element != nullptr;) { // element may be removed in unscheduleAllSelectorsForTarget nextElement = (tHashTimerEntry *)element->hh.next; unscheduleAllForTarget(element->target); element = nextElement; } // Updates selectors tListEntry *entry, *tmp; if(minPriority < 0) { DL_FOREACH_SAFE(_updatesNegList, entry, tmp) { if(entry->priority >= minPriority) { unscheduleUpdate(entry->target); } } } if(minPriority <= 0) { DL_FOREACH_SAFE(_updates0List, entry, tmp) { unscheduleUpdate(entry->target); } } DL_FOREACH_SAFE(_updatesPosList, entry, tmp) { if(entry->priority >= minPriority) { unscheduleUpdate(entry->target); } } #if CC_ENABLE_SCRIPT_BINDING _scriptHandlerEntries.clear(); #endif } void Scheduler::unscheduleAllForTarget(void *target) { // explicit nullptr handling if (target == nullptr) { return; } // Custom Selectors tHashTimerEntry *element = nullptr; HASH_FIND_PTR(_hashForTimers, &target, element); if (element) { if (ccArrayContainsObject(element->timers, element->currentTimer) && (! element->currentTimer->isAborted())) { element->currentTimer->retain(); element->currentTimer->setAborted(); } ccArrayRemoveAllObjects(element->timers); if (_currentTarget == element) { _currentTargetSalvaged = true; } else { removeHashElement(element); } } // update selector unscheduleUpdate(target); } #if CC_ENABLE_SCRIPT_BINDING unsigned int Scheduler::scheduleScriptFunc(unsigned int handler, float interval, bool paused) { SchedulerScriptHandlerEntry* entry = SchedulerScriptHandlerEntry::create(handler, interval, paused); _scriptHandlerEntries.pushBack(entry); return entry->getEntryId(); } void Scheduler::unscheduleScriptEntry(unsigned int scheduleScriptEntryID) { for (ssize_t i = _scriptHandlerEntries.size() - 1; i >= 0; i--) { SchedulerScriptHandlerEntry* entry = _scriptHandlerEntries.at(i); if (entry->getEntryId() == (int)scheduleScriptEntryID) { entry->markedForDeletion(); break; } } } #endif void Scheduler::resumeTarget(void *target) { CCASSERT(target != nullptr, "target can't be nullptr!"); // custom selectors tHashTimerEntry *element = nullptr; HASH_FIND_PTR(_hashForTimers, &target, element); if (element) { element->paused = false; } // update selector tHashUpdateEntry *elementUpdate = nullptr; HASH_FIND_PTR(_hashForUpdates, &target, elementUpdate); if (elementUpdate) { CCASSERT(elementUpdate->entry != nullptr, "elementUpdate's entry can't be nullptr!"); elementUpdate->entry->paused = false; } } void Scheduler::pauseTarget(void *target) { CCASSERT(target != nullptr, "target can't be nullptr!"); // custom selectors tHashTimerEntry *element = nullptr; HASH_FIND_PTR(_hashForTimers, &target, element); if (element) { element->paused = true; } // update selector tHashUpdateEntry *elementUpdate = nullptr; HASH_FIND_PTR(_hashForUpdates, &target, elementUpdate); if (elementUpdate) { CCASSERT(elementUpdate->entry != nullptr, "elementUpdate's entry can't be nullptr!"); elementUpdate->entry->paused = true; } } bool Scheduler::isTargetPaused(void *target) { CCASSERT( target != nullptr, "target must be non nil" ); // Custom selectors tHashTimerEntry *element = nullptr; HASH_FIND_PTR(_hashForTimers, &target, element); if( element ) { return element->paused; } // We should check update selectors if target does not have custom selectors tHashUpdateEntry *elementUpdate = nullptr; HASH_FIND_PTR(_hashForUpdates, &target, elementUpdate); if ( elementUpdate ) { return elementUpdate->entry->paused; } return false; // should never get here } std::set Scheduler::pauseAllTargets() { return pauseAllTargetsWithMinPriority(PRIORITY_SYSTEM); } std::set Scheduler::pauseAllTargetsWithMinPriority(int minPriority) { std::set idsWithSelectors; // Custom Selectors for(tHashTimerEntry *element = _hashForTimers; element != nullptr; element = (tHashTimerEntry*)element->hh.next) { element->paused = true; idsWithSelectors.insert(element->target); } // Updates selectors tListEntry *entry, *tmp; if(minPriority < 0) { DL_FOREACH_SAFE( _updatesNegList, entry, tmp ) { if(entry->priority >= minPriority) { entry->paused = true; idsWithSelectors.insert(entry->target); } } } if(minPriority <= 0) { DL_FOREACH_SAFE( _updates0List, entry, tmp ) { entry->paused = true; idsWithSelectors.insert(entry->target); } } DL_FOREACH_SAFE( _updatesPosList, entry, tmp ) { if(entry->priority >= minPriority) { entry->paused = true; idsWithSelectors.insert(entry->target); } } return idsWithSelectors; } void Scheduler::resumeTargets(const std::set& targetsToResume) { for(const auto &obj : targetsToResume) { this->resumeTarget(obj); } } void Scheduler::performFunctionInCocosThread(std::function function) { std::lock_guard lock(_performMutex); _functionsToPerform.push_back(std::move(function)); } void Scheduler::removeAllFunctionsToBePerformedInCocosThread() { std::unique_lock lock(_performMutex); _functionsToPerform.clear(); } // main loop void Scheduler::update(float dt) { _updateHashLocked = true; if (_timeScale != 1.0f) { dt *= _timeScale; } // // Selector callbacks // // Iterate over all the Updates' selectors tListEntry *entry, *tmp; // updates with priority < 0 DL_FOREACH_SAFE(_updatesNegList, entry, tmp) { if ((! entry->paused) && (! entry->markedForDeletion)) { entry->callback(dt); } } // updates with priority == 0 DL_FOREACH_SAFE(_updates0List, entry, tmp) { if ((! entry->paused) && (! entry->markedForDeletion)) { entry->callback(dt); } } // updates with priority > 0 DL_FOREACH_SAFE(_updatesPosList, entry, tmp) { if ((! entry->paused) && (! entry->markedForDeletion)) { entry->callback(dt); } } // Iterate over all the custom selectors for (tHashTimerEntry *elt = _hashForTimers; elt != nullptr; ) { _currentTarget = elt; _currentTargetSalvaged = false; if (! _currentTarget->paused) { // The 'timers' array may change while inside this loop for (elt->timerIndex = 0; elt->timerIndex < elt->timers->num; ++(elt->timerIndex)) { elt->currentTimer = (Timer*)(elt->timers->arr[elt->timerIndex]); CCASSERT ( !elt->currentTimer->isAborted(), "An aborted timer should not be updated" ); elt->currentTimer->update(dt); if (elt->currentTimer->isAborted()) { // The currentTimer told the remove itself. To prevent the timer from // accidentally deallocating itself before finishing its step, we retained // it. Now that step is done, it's safe to release it. elt->currentTimer->release(); } elt->currentTimer = nullptr; } } // elt, at this moment, is still valid // so it is safe to ask this here (issue #490) elt = (tHashTimerEntry *)elt->hh.next; // only delete currentTarget if no actions were scheduled during the cycle (issue #481) if (_currentTargetSalvaged && _currentTarget->timers->num == 0) { removeHashElement(_currentTarget); } } // delete all updates that are removed in update for (auto &e : _updateDeleteVector) delete e; _updateDeleteVector.clear(); _updateHashLocked = false; _currentTarget = nullptr; #if CC_ENABLE_SCRIPT_BINDING // // Script callbacks // // Iterate over all the script callbacks if (!_scriptHandlerEntries.empty()) { for (auto i = _scriptHandlerEntries.size() - 1; i >= 0; i--) { SchedulerScriptHandlerEntry* eachEntry = _scriptHandlerEntries.at(i); if (eachEntry->isMarkedForDeletion()) { _scriptHandlerEntries.erase(i); } else if (!eachEntry->isPaused()) { eachEntry->getTimer()->update(dt); } } } #endif // // Functions allocated from another thread // // Testing size is faster than locking / unlocking. // And almost never there will be functions scheduled to be called. if( !_functionsToPerform.empty() ) { _performMutex.lock(); // fixed #4123: Save the callback functions, they must be invoked after '_performMutex.unlock()', otherwise if new functions are added in callback, it will cause thread deadlock. auto temp = std::move(_functionsToPerform); _performMutex.unlock(); for (const auto &function : temp) { function(); } } } void Scheduler::schedule(SEL_SCHEDULE selector, Ref *target, float interval, unsigned int repeat, float delay, bool paused) { CCASSERT(target, "Argument target must be non-nullptr"); tHashTimerEntry *element = nullptr; HASH_FIND_PTR(_hashForTimers, &target, element); if (! element) { element = (tHashTimerEntry *)calloc(sizeof(*element), 1); element->target = target; HASH_ADD_PTR(_hashForTimers, target, element); // Is this the 1st element ? Then set the pause level to all the selectors of this target element->paused = paused; } else { CCASSERT(element->paused == paused, "element's paused should be paused."); } if (element->timers == nullptr) { element->timers = ccArrayNew(10); } else { for (int i = 0; i < element->timers->num; ++i) { TimerTargetSelector *timer = dynamic_cast(element->timers->arr[i]); if (timer && !timer->isExhausted() && selector == timer->getSelector()) { CCLOG("CCScheduler#schedule. Reiniting timer with interval %.4f, repeat %u, delay %.4f", interval, repeat, delay); timer->setupTimerWithInterval(interval, repeat, delay); return; } } ccArrayEnsureExtraCapacity(element->timers, 1); } TimerTargetSelector *timer = new (std::nothrow) TimerTargetSelector(); timer->initWithSelector(this, selector, target, interval, repeat, delay); ccArrayAppendObject(element->timers, timer); timer->release(); } void Scheduler::schedule(SEL_SCHEDULE selector, Ref *target, float interval, bool paused) { this->schedule(selector, target, interval, CC_REPEAT_FOREVER, 0.0f, paused); } bool Scheduler::isScheduled(SEL_SCHEDULE selector, const Ref *target) const { CCASSERT(selector, "Argument selector must be non-nullptr"); CCASSERT(target, "Argument target must be non-nullptr"); tHashTimerEntry *element = nullptr; HASH_FIND_PTR(_hashForTimers, &target, element); if (!element) { return false; } if (element->timers == nullptr) { return false; } for (int i = 0; i < element->timers->num; ++i) { TimerTargetSelector *timer = dynamic_cast(element->timers->arr[i]); if (timer && !timer->isExhausted() && selector == timer->getSelector()) { return true; } } return false; } void Scheduler::unschedule(SEL_SCHEDULE selector, Ref *target) { // explicit handle nil arguments when removing an object if (target == nullptr || selector == nullptr) { return; } tHashTimerEntry *element = nullptr; HASH_FIND_PTR(_hashForTimers, &target, element); if (element) { for (int i = 0; i < element->timers->num; ++i) { TimerTargetSelector *timer = dynamic_cast(element->timers->arr[i]); if (timer && selector == timer->getSelector()) { if (timer == element->currentTimer && !timer->isAborted()) { timer->retain(); timer->setAborted(); } ccArrayRemoveObjectAtIndex(element->timers, i, true); // update timerIndex in case we are in tick:, looping over the actions if (element->timerIndex >= i) { element->timerIndex--; } if (element->timers->num == 0) { if (_currentTarget == element) { _currentTargetSalvaged = true; } else { removeHashElement(element); } } return; } } } } NS_CC_END